首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Caldesmon, calmodulin and tropomyosin interactions
Authors:M H Watson  A E Kuhn  A S Mak
Institution:Department of Biochemistry, Queen's University, Kingston, Ontario, Canada.
Abstract:Binary complex interactions between caldesmon and tropomyosin, and calmodulin and tropomyosin, and ternary complex interaction involving the three proteins were studied using viscosity, electron microscopy, fluorescence and affinity chromatography techniques. In 10 mM NaCl, caldesmon decreased the viscosity of chicken gizzard tropomyosin by 7-8 fold with a concomitant increase in turbidity (A330nm). Electron micrographs showed spindle-shaped particles in the tropomyosin-caldesmon samples. These results suggest side-by-side aggregation of tropomyosin polymers induced by caldesmon. Binding studies in 10 mM NaCl between caldesmon and chicken gizzard tropomyosin labelled with the fluorescent probe N-(1-anilinonaphthyl-4)maleimide (ANM) gave association constants from 5.3.10(6) to 7.9.10(6) M-1 and stoichiometry from 1.0 to 1.4 tropomyosin per caldesmon. Similar binding was observed for rabbit cardiac tropomyosin and caldesmon. Removal of 18 and 11 residues from the COOH ends of the gizzard and cardiac tropomyosin by carboxypeptidase A, respectively, had no significant effect on their binding to caldesmon. In the presence of Ca2+, chicken gizzard tropomyosin bound to a calmodulin-Sepharose-4B column and was eluted with a salt concentration of 140 mM. This interaction was weakened in the absence of Ca2+, and the bound tropomyosin was eluted by 65 mM KCl. ANM-labelled tropomyosin bound calmodulin in the presence of Ca2+ with a binding constant of 3.5.10(6) M-1 and a binding stoichiometry of 1 to 1.4 tropomyosin per calmodulin. In 10 mM NaCl, calmodulin reduced the specific viscosity of chicken gizzard tropomyosin in the presence of Ca2+ by 5 fold, while a 1.5-fold reduction in viscosity was observed in the absence of Ca2+. In either case, no significant increase in turbidity was observed suggesting that calmodulin reduced head-to-tail polymerization of tropomyosin. The interaction of caldesmon with the calmodulin-ANM-tropomyosin complex in the presence and absence of Ca2+ was also examined. The result is consistent with a model that in the absence of Ca2+, calmodulin binds weakly to either caldesmon or tropomyosin and has little effect on the tropomyosin-caldesmon interaction; whereas, Ca2(+)-calmodulin interacts with caldesmon and reduces its affinity to tropomyosin.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号