首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Predicting fundamental and realized distributions based on thermal niche: A case study of a freshwater turtle
Institution:Departamento de Ecologia, Universidade Federal de Goiás, Campus Samambaia, CEP 74001-970, Goiânia, GO, Brazil
Abstract:Species distribution models (SDM) have been broadly used in ecology to address theoretical and practical problems. Currently, there are two main approaches to generate SDMs: (i) correlative, which is based on species occurrences and environmental predictor layers and (ii) process-based models, which are constructed based on species' functional traits and physiological tolerances. The distributions estimated by each approach are based on different components of species niche. Predictions of correlative models approach species realized niches, while predictions of process-based are more akin to species fundamental niche. Here, we integrated the predictions of fundamental and realized distributions of the freshwater turtle Trachemys dorbigni. Fundamental distribution was estimated using data of T. dorbigni's egg incubation temperature, and realized distribution was estimated using species occurrence records. Both types of distributions were estimated using the same regression approaches (logistic regression and support vector machines), both considering macroclimatic and microclimatic temperatures. The realized distribution of T. dorbigni was generally nested in its fundamental distribution reinforcing theoretical assumptions that the species' realized niche is a subset of its fundamental niche. Both modelling algorithms produced similar results but microtemperature generated better results than macrotemperature for the incubation model. Finally, our results reinforce the conclusion that species realized distributions are constrained by other factors other than just thermal tolerances.
Keywords:Incubation temperature  Physiology  Process-based models  Species distribution models
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号