首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effect of chemical structures of acridine and triphenylmethane dyes on the induced optical activity of DNA-dye complexes
Authors:K Yamaoka
Abstract:Fifteen symmetrically substituted acridine dyes, all of which are interrelated by their chemical structures, each belonging to a C2v symmetry, and three triphenylmethane dyes with amino or dimethylamino substituents are utilized to study necessary conditions for the appearance of extrinsic Cotton effects upon their binding to native and heat-denatured deoxyribonucleic acid (DNA). Three different kinds of the DNA–dye complexes, i.e., (1) dye added to native DNA, (2) heat-denatured DNA–dye complex, and (3) dye added to preheated DNA, were examined for each dye at a fixed P/D value of about 4. Optical activity was always observed for the compelexes of type (1) in each absorption band of the dyes in the visible and near-ultraviolet region. Two exceptions are 9-acetamido- and 9-hydroxyacridine, both being nonionic in aqueous solution at a pH range of 6. Acridinium chloride was unable to exhibit any definite extrinsic Cotton effect for complexes (2) and (3). Thus, the monocationic form of a dye due to the protonation or quaternization of the ring nitrogen in acridines or exonuclear amino nitrogen in triphenylmethane dyes is concluded to be an essential factor for extrinsic Cotton effect to appear. Changes in the absorption spectra upon complex formation are also related to the structure of dyes. Hypochromism and bathochromism are associated with the induced optical activity in all cases in the presence of native and denatured DNA.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号