首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effect of thyroid hormone on intracellular Ca2+ mobilization by noradrenaline and vasopressin in relation to glycogenolysis in rat liver
Authors:H Storm  C van Hardeveld
Abstract:The relation between Ca2+ efflux, Ca2+ mobilization from mitochondria and glycogenolysis was studied in perfused euthyroid and hypothyroid rat livers stimulated by Ca2+-mobilizing hormones. Ca2+ efflux, induced by noradrenaline (1 microM) in the absence or presence of DL-propranolol (10 microM) from livers perfused with medium containing a low concentration of Ca2+ (approx. 24 microM), was decreased by more than 50% in hypothyroidism. This correlated with an equal decrease of the fractional mobilization of mitochondrial Ca2+, which could account for 65% of the difference between the net amounts of Ca2+ expelled from the euthyroid and hypothyroid livers. With vasopressin (10 nM) similar results were found, suggesting that hypothyroidism has a general effect on mobilization of internal Ca2+. In normal Ca2+ medium (1300 microM), however, the effect of vasopressin on net Ca2+ fluxes and phosphorylase activation was not impaired in hypothyroidism, indicating that Ca2+ mobilization from the mitochondria in this case plays a minor role in phosphorylase activation. The alpha 1-adrenergic responses of Ca2+ efflux, phosphorylase activation and glucose output, glucose-6-phosphatase activity and oxygen consumption in hypothyroid rat liver were completely restored by in vivo T3 injections (0.5 micrograms per 100 g body weight, daily during 3 days). Perfusion with T3 (100 pM) during 19 min did not influence hypothyroid rat liver oxygen consumption and alpha 1-receptor-mediated Ca2+ efflux. However, this in vitro T3 treatment showed a completely recovered alpha 1-adrenergic response of phosphorylase and a partly restored glucose-6-phosphatase activity and glucose output. The results indicate that thyroid hormones may control alpha 1-adrenergic stimulation of glycogenolysis by at least two mechanisms, i.e., a long-term action on Ca2+ mobilization, and a short-term action on separate stages of the glycogenolytic process.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号