首页 | 本学科首页   官方微博 | 高级检索  
     


hRev7, putative subunit of hPolzeta, plays a critical role in survival, induction of mutations, and progression through S-phase, of UV((254nm))-irradiated human fibroblasts
Authors:McNally Kristin  Neal Jessica A  McManus Terrence P  McCormick J Justin  Maher Veronica M
Affiliation:Carcinogenesis Laboratory, Cell and Molecular Biology Program, Department of Microbiology & Molecular Genetics, and Department of Biochemistry &Molecular Biology, Michigan State University, East Lansing, MI 48824-1302, USA.
Abstract:Translesion synthesis (TLS) refers to mechanisms by which specialized DNA polymerases incorporate nucleotides opposite fork-blocking lesions and extend replication until standard replicative polymerases take over. The first eukaryotic TLS polymerase discovered, S. cerevisiae Polzeta, consists of catalytic subunit Rev3 and non-catalytic subunit Rev7. Human homologs of these two proteins have been identified. Studies by Lawrence, Maher, and colleagues comparing UV((254nm))-irradiated human fibroblast cell strains expressing high levels of hRev3 antisense to their normal parental strains demonstrated that there was no difference in cell survival, but that the frequency of UV-induced mutations in the derivative strains was 10-fold lower than that of the parental strains, indicating that hRev3 plays a critical role in such mutagenesis. To examine the role of hRev7 in TLS, we generated human fibroblasts expressing hRev7 siRNA, identified two derivative cell strains with significantly reduced levels of hRev7, and compared them to their parental strain and a vector control for cell survival, induction of mutations, and ability to traverse the cell cycle following exposure to UV radiation. Cells with reduced hRev7 were approximately 2-times more sensitive to UV-induced cytotoxicity than the controls, indicating that unlike hRev3, hRev7 plays a protective role for cells exposed to UV radiation. When these cell strains were assayed for the frequency of mutations induced by UV in their HPRT gene, cell stains with reduced hRev7 were 5-times less sensitive to UV-induced mutagenesis than control strains. In addition, when these four strains were synchronized at the G1/S border, released from the block, UV-irradiated, and allowed to traverse the cell cycle, the rate of progression through S-phase of the cell strains with reduced hRev7 was significantly slower than that of the control strains. These data strongly support the hypothesis that hRev7 is required for TLS past UV-photoproducts, and together with hRev3, comprise hPolzeta.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号