Human bile salt-dependent lipase efficiency on medium-chain acyl-containing substrates: control by sodium taurocholate |
| |
Authors: | Fontbonne Hervé Brisson Lydie Vérine Alain Puigserver Antoine Lombardo Dominique Ajandouz El Hassan |
| |
Affiliation: | BiosCiences-ISM2, UMR 6263, CNRS-Université Paul Cézanne-Aix Marseille III, Case 342, Faculté des Sciences et Techniques de Saint Jér?me, Marseille, France. |
| |
Abstract: | Bile salt-dependent lipase was purified to homogeneity from lyophilized human milk and used to screen the influence of the acyl chain length (2-16 carbon atoms) on the kinetic constants k(cat) and K(m) of the hydrolysis of para-nitrophenyl (pnp) ester substrates in the presence or absence of sodium taurocholate (NaTC: 0.02-20 mM). The highest k(cat) value (~3,500 s(-1)) was obtained with pnpC(8) as substrate, whereas the lowest K(m) (<10 μM) was that recorded with pnpC(10). In the absence of NaTC, the maximal catalytic efficiency (k(cat)/K(m)) was obtained with pnpC(8), while in the presence of NaTC k(cat)/K(m) was maximal with pnpC(8), pnpC(10) or pnpC(12). The bile salt activated the enzyme in two successive saturation phases occurring at a micromolar and a millimolar concentration range, respectively. The present data emphasize the suitability of this enzyme for the hydrolysis of medium-chain acyl-containing substrates and throw additional light on how BSDL is activated by NaTC. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|