首页 | 本学科首页   官方微博 | 高级检索  
     


Alteration of bacterial surface electrostatic potential and pH upon adhesion to a solid surface and impacts to cellular bioenergetics
Authors:Yongsuk Hong  Derick G. Brown
Affiliation:1. Department of Civil & Environmental Engineering, Lehigh University, 13 East Packer Avenue, Bethlehem, Pennsylvania 18015;2. telephone: 610‐758‐3543;3. fax: 610‐758‐6405
Abstract:In our previous study [Hong Y, Brown DG (2009) Appl Environ Microbiol 75(8):2346–2353], the adenosine triphosphate (ATP) level of adhered bacteria was observed to be 2–5 times higher than that of planktonic bacteria. Consequently, the proton motive force (Δp) of adhered bacteria was approximately 15% greater than that of planktonic bacteria. It was hypothesized that the cell surface pH changes upon adhesion due to the charge‐regulated nature of the bacterial cell surface and that this change in surface pH can propagate to the cytoplasmic membrane and alter Δp. In the current study, we developed and applied a charge regulation model to bacterial adhesion and demonstrated that the charge nature of the adhering surface can have a significant effect on the cell surface pH and ultimately the affect the ATP levels of adhered bacteria. The results indicated that the negatively charged glass surface can result in a two‐unit drop in cell surface pH, whereas adhesion to a positively charged amine surface can result in a two‐unit rise in pH. The working hypothesis indicates that the negatively charged surface should enhance Δp and increase cellular ATP, while the positively charged surface should decrease Δp and decrease ATP, and these results of the hypothesis are directly supported by prior experimental results with both negatively and positively charged surfaces. Overall, these results suggest that the nature of charge on the solid surface can have an impact on the proton motive force and cellular ATP levels. Biotechnol. Bioeng. 2010;105: 965–972. © 2009 Wiley Periodicals, Inc.
Keywords:ATP  proton motive force  adhesion  charge regulation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号