首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Structural analysis of some soluble elastins by means of FT‐IR and 2D IR correlation spectroscopy
Authors:Maria‐Cristina Popescu  Cornelia Vasile  Oana Craciunescu
Institution:1. Department of Physical Chemistry of Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, Iasi, Romania;2. Department of Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, 296 Splaiul Independen?ei, Bucharest, Romania
Abstract:Fourier transform infrared (FT‐IR) spectroscopy combined with 2D correlation spectroscopy has been used to offer some information about stability and structure of some soluble elastins. Temperature has been chosen as the perturbation to monitor the infrared behavior of various soluble elastins, namely, α‐elastin p, α‐elastin, and k‐elastin. In the 3800–2700 cm?1 region, the H‐containing groups were analyzed. The bonded hydroxyls are found to decrease prior to the NH‐related hydrogen bonds and also to the conformational reorganization of hydrocarbon chains. The transition temperatures were evaluated and they were found to agree with those obtained from DSC data. The FTIR spectra and their 2nd derivatives denote that α‐ elastins exhibited amide‐I, ‐II and ‐III bands at 1656, 1539 and 1236 cm?1, respectively, while in k‐elastin these bands were found at 1652 cm?1 for amide I, 1540 cm?1 for amide II and 1248 cm?1 for amide III. The macroscopic IR finger‐print method, which combines: general IR spectra, secondary derivative spectra, and 2D‐IR correlation spectra, is useful to discriminate different elastins. Thus using the differences of the position and intensity of the bands from “fingerprint region” of studied elastins, which include the peaks assigned to C?O, C? C groups from α‐helix, β‐turn, and the peaks assigned to the amide groups, it is possible to identify and discriminate elastins from each others. Furthermore, the pattern of 2D‐IR correlation spectra under thermal perturbation, allow their direct identification and discrimination. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 1072–1084, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com
Keywords:soluble elastins  2D correlation spectroscopy  differential scanning calorimetry
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号