首页 | 本学科首页   官方微博 | 高级检索  
     


A process for microbial hydrocarbon synthesis: Overproduction of fatty acids in Escherichia coli and catalytic conversion to alkanes
Authors:Rebecca M. Lennen  Drew J. Braden  Ryan M. West  James A. Dumesic  Brian F. Pfleger
Affiliation:1. Department of Chemical and Biological Engineering, University of Wisconsin‐Madison, Madison Wisconsin, telephone: 608‐890‐1940;2. fax: 608‐262‐5434
Abstract:The development of renewable alternatives to diesel and jet fuels is highly desirable for the heavy transportation sector, and would offer benefits over the production and use of short‐chain alcohols for personal transportation. Here, we report the development of a metabolically engineered strain of Escherichia coli that overproduces medium‐chain length fatty acids via three basic modifications: elimination of β‐oxidation, overexpression of the four subunits of acetyl‐CoA carboxylase, and expression of a plant acyl–acyl carrier protein (ACP) thioesterase from Umbellularia californica (BTE). The expression level of BTE was optimized by comparing fatty acid production from strains harboring BTE on plasmids with four different copy numbers. Expression of BTE from low copy number plasmids resulted in the highest fatty acid production. Up to a seven‐fold increase in total fatty acid production was observed in engineered strains over a negative control strain (lacking β‐oxidation), with a composition dominated by C12 and C14 saturated and unsaturated fatty acids. Next, a strategy for producing undecane via a combination of biotechnology and heterogeneous catalysis is demonstrated. Fatty acids were extracted from a culture of an overproducing strain into an alkane phase and fed to a Pd/C plug flow reactor, where the extracted fatty acids were decarboxylated into saturated alkanes. The result is an enriched alkane stream that can be recycled for continuous extractions. Complete conversion of C12 fatty acids extracted from culture to alkanes has been demonstrated yielding a concentration of 0.44 g L?1 (culture volume) undecane. Biotechnol. Bioeng. 2010;106: 193–202. © 2010 Wiley Periodicals, Inc.
Keywords:metabolic engineering  Escherichia coli  fatty acid  alkane  biofuel  diesel
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号