首页 | 本学科首页   官方微博 | 高级检索  
     


Complete anaerobic mineralization of pentachlorophenol (PCP) under continuous flow conditions by sequential combination of PCP‐dechlorinating and phenol‐degrading consortia
Authors:Zhiling Li  Suyin Yang  Yasushi Inoue  Naoko Yoshida  Arata Katayama
Affiliation:1. Department of Civil Engineering, Graduate School of Engineering, Nagoya University, Chikusa, Nagoya, Japan;2. EcoTopia Science Institute, Nagoya University, Chikusa, Nagoya 464‐8603, Japan;3. telephone: 81‐52‐789‐5856;4. fax: 81‐52‐789‐5857
Abstract:Complete mineralization of 50 µM of pentachlorophenol (PCP) was achieved anaerobically under continuous flow conditions using two columns connected in series with a hydraulic retention time of 14.2 days, showing the highest reported mineralization rate yet of 3.5 µM day?1. The first column, when injected with a reductive PCP dechlorinating consortium, dechlorinated PCP to mainly phenol and traces of 3‐chlorophenol (3‐CP) using lactate supplied continuously as an electron donor. The second column, with an anaerobic phenol degrading consortium, decomposed phenol and 3‐CP under iron‐reducing conditions with substantial fermentative degradation of organic compounds. When 20 mM of lactate was introduced into the first column, the phenol degradation activity of the second column was lost in a short period of time, because the amorphous Fe(III) oxide (FeOOH) that had been packed in the column before use was depleted by lactate metabolites, such as acetate and propionate, flowing into the second column from the first column. The complete mineralization of PCP was maintained for a long period by reducing the lactate concentration to 4 mM, effectively extending the longevity of second‐column activity with no depletion of FeOOH for more than 200 pore volumes (corresponding to 3,000 days). The carbon balance showed that 50 µM PCP and 4 mM lactate in the influent had transformed to CO2 (81%) and CH4 (3%) and had contributed to biomass growth (8%). A comparison of the microbial consortia introduced into the columns and those flowing out from the columns suggested that the introduced population did not flow out during the experiments, although the microbial composition of the phenol column was considered to be affected by the inflow of microbes from the PCP dechlorination column. These results suggest that a sequential combination of reductive dechlorinating and anaerobic oxidizing consortia is useful for anaerobic remediation of chlorinated aromatic compounds in a microbial permeable reactive barrier. Biotechnol. Bioeng. 2010;107: 775–785. © 2010 Wiley Periodicals, Inc.
Keywords:complete anaerobic mineralization of PCP  sequential combination of reductive dechlorinator and anaerobic degrader  lactate  amorphous Fe(III) oxide  column longevity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号