首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Novel micro‐bioreactor high throughput technology for cell culture process development: Reproducibility and scalability assessment of fed‐batch CHO cultures
Authors:Ashraf Amanullah  Jose Manuel Otero  Mark Mikola  Amy Hsu  Jinyou Zhang  John Aunins  H Brett Schreyer  James A Hope  A Peter Russo
Institution:1. Vaccine & Biologics Process Development, Merck Research Laboratories, Merck & Co. Inc. West Point, Pennsylvania, 19486;2. Bioprocess R&D, Merck Research Laboratories, Merck & Co. Inc., Rahway, New Jersey 07065;3. Seahorse Bioscience Inc., 16 Esquire Road, Billerica, Massachusetts 01862
Abstract:With increasing timeline pressures to get therapeutic and vaccine candidates into the clinic, resource intensive approaches such as the use of shake flasks and bench‐top bioreactors may limit the design space for experimentation to yield highly productive processes. The need to conduct large numbers of experiments has resulted in the use of miniaturized high‐throughput (HT) technology for process development. One such high‐throughput system is the SimCell? platform, a robotically driven, cell culture bioreactor system developed by BioProcessors Corp. This study describes the use of the SimCell? micro‐bioreactor technology for fed‐batch cultivation of a GS‐CHO transfectant expressing a model IgG4 monoclonal antibody. Cultivations were conducted in gas‐permeable chambers based on a micro‐fluidic design, with six micro‐bioreactors (MBs) per micro‐bioreactor array (MBA). Online, non‐invasive measurement of total cell density, pH and dissolved oxygen (DO) was performed. One hundred fourteen parallel MBs (19 MBAs) were employed to examine process reproducibility and scalability at shake flask, 3‐ and 100‐L bioreactor scales. The results of the study demonstrate that the SimCell? platform operated under fed‐batch conditions could support viable cell concentrations up to least 12 × 106 cells/mL. In addition, both intra‐MB (MB to MB) as well as intra‐MBA (MBA to MBA) culture performance was found to be highly reproducible. The intra‐MB and ‐MBA variability was calculated for each measurement as the coefficient of variation defined as CV (%) = (standard deviation/mean) × 100. The % CV values for most intra‐MB and intra‐MBA measurements were generally under 10% and the intra‐MBA values were slightly lower than those for intra‐MB. Cell growth, process parameters, metabolic and protein titer profiles were also compared to those from shake flask, bench‐top, and pilot scale bioreactor cultivations and found to be within ±20% of the historical averages. Biotechnol. Bioeng. 2010; 106: 57–67. © 2010 Wiley Periodicals, Inc.
Keywords:high‐throughput  micro‐bioreactor  fed‐batch CHO cultures  process reproducibility and scalability
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号