Determination of the proton environment of high stability Menasemiquinone intermediate in Escherichia coli nitrate reductase A by pulsed EPR |
| |
Authors: | Grimaldi Stéphane Arias-Cartin Rodrigo Lanciano Pascal Lyubenova Sevdalina Szenes Rodolphe Endeward Burkhard Prisner Thomas F Guigliarelli Bruno Magalon Axel |
| |
Affiliation: | Unité de Bioénergétique et Ingénierie des Protéines (UPR9036), Institut de Microbiologie de la Méditerranée, CNRS and Aix-Marseille University, 13009 Marseille, France. grimaldi@ifr88.cnrs-mrs.fr |
| |
Abstract: | Escherichia coli nitrate reductase A (NarGHI) is a membrane-bound enzyme that couples quinol oxidation at a periplasmically oriented Q-site (QD) to proton release into the periplasm during anaerobic respiration. To elucidate the molecular mechanism underlying such a coupling, endogenous menasemiquinone-8 intermediates stabilized at the QD site (MSQD) of NarGHI have been studied by high-resolution pulsed EPR methods in combination with 1H2O/2H2O exchange experiments. One of the two non-exchangeable proton hyperfine couplings resolved in hyperfine sublevel correlation (HYSCORE) spectra of the radical displays characteristics typical from quinone methyl protons. However, its unusually small isotropic value reflects a singularly low spin density on the quinone carbon α carrying the methyl group, which is ascribed to a strong asymmetry of the MSQD binding mode and consistent with single-sided hydrogen bonding to the quinone oxygen O1. Furthermore, a single exchangeable proton hyperfine coupling is resolved, both by comparing the HYSCORE spectra of the radical in 1H2O and 2H2O samples and by selective detection of the exchanged deuterons using Q-band 2H Mims electron nuclear double resonance (ENDOR) spectroscopy. Spectral analysis reveals its peculiar characteristics, i.e. a large anisotropic hyperfine coupling together with an almost zero isotropic contribution. It is assigned to a proton involved in a short ∼1.6 Å in-plane hydrogen bond between the quinone O1 oxygen and the Nδ of the His-66 residue, an axial ligand of the distal heme bD. Structural and mechanistic implications of these results for the electron-coupled proton translocation mechanism at the QD site are discussed, in light of the unusually high thermodynamic stability of MSQD. |
| |
Keywords: | Bioenergetics Electron Paramagnetic Resonance (EPR) Electron Transfer Metalloenzymes Quinones |
本文献已被 PubMed 等数据库收录! |
|