首页 | 本学科首页   官方微博 | 高级检索  
     


Conformational behavior of chondroitin and chondroitin sulfate in relation to their physical properties as inferred by molecular modeling
Authors:Rodríguez-Carvajal Miguel A  Imberty Anne  Pérez Serge
Affiliation:Centre de Recherches sur les Macromolécules Végétales, CNRS, Grenoble, France.
Abstract:Chondroitin and chondroitin sulfates belong to the family of glycosaminoglycans. They are most widely distributed in animal tissues, where they are involved in structural functions and in cell-cell communication. Their basic structures consist of a disaccharidic repeating unit of beta-D-glucuronic acid (GlcA) and 2-acetamido-2-deoxy-beta-D-galactose (GalNAc), this latter being sulfated at different positions. Molecular mechanics has been applied to calculate the adiabatic energy maps for each of the constituting disaccharides of chondroitin, chondroitin 4-sulfate, and chondroitin 6-sulfate using the MM3 force field. Based on these maps, higher levels of structural organization have been simulated. On one hand, the disordered state is studied through a Metropolis-based algorithm; the resulting chains present a behavior of semirigid polymers, with an order of stiffness: chondroitin 4-sulfate > chondroitin > chondroitin 6-sulfate. On the other hand, the exploration of the stable ordered forms leads to numerous helical conformations of comparable energies. Several of these conformations correspond to the experimentally observed ones. The ability of coordination with cations has also been explored, resulting in a preferential stereospecificity for calcium ions when compared to sodium ions.
Keywords:glycosaminoglycan  conformation  chondroitin sulfate  MM3  molecular mechanics  helix  GRID  METROPOL
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号