首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Smooth muscle F-actin disassembly and RhoA/Rho-kinase signaling during endotoxin-induced alterations in pulmonary arterial compliance
Authors:Boer Christa  van Nieuw Amerongen Geerten P  Groeneveld A B Johan  Scheffer Gert Jan  de Lange Jaap J  Westerhof Nico  van Hinsbergh Victor W M  Sipkema Pieter
Institution:Laboratory for Physiology, Department of Anesthesiology, VU University Medical Center, Institute for Cardiovascular Research Vrije Universiteit, 1081 BT Amsterdam, The Netherlands. c.boer@vumc.nl
Abstract:Endotoxemia is associated with changed pulmonary vascular function with respect to vasoreactivity, endothelial permeability, and activation of inducible nitric oxide synthase II (NOSII). However, whether altered passive arterial wall mechanics contribute to this endotoxin-induced pulmonary vascular dysfunction is still unknown. Therefore, we investigated whether endotoxin affects the passive arterial mechanics and compliance of isolated rat pulmonary arteries. Pulmonary arteries of pentobarbital-anesthetized Wistar rats (n = 55) were isolated and exposed to Escherichia coli endotoxin (50 microg/ml) for 20 h. Endotoxin increased pulmonary artery diameter and compliance (transmural pressure = 13 mmHg) in an endothelium-, Ca2+-, or NOSII-induced NO release-independent manner. Interestingly, the endotoxin-induced alterations in the passive arterial mechanics were accompanied by disassembly of the smooth muscle cell (SMC) F-actin cytoskeleton. Disassembly of F-actin by incubation of control arteries with the cytoskeleton-disrupting agent cytochalasin B or the Rho-kinase inhibitor Y-27632 induced a similar increase in passive arterial diameter and compliance. In contrast, RhoA activation by lysophosphatidic acid prevented the endotoxin-induced alterations in the pulmonary SMC F-actin cytoskeleton and passive mechanics. In conclusion, these findings indicate that disassembly of the SMC F-actin cytoskeleton and RhoA/Rho-kinase signaling act as mediators of endotoxin-induced changes in the pulmonary arterial mechanics. They imply the involvement of F-actin rearrangement and RhoA/Rho-kinase signaling in endotoxemia-induced vascular lung injury.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号