首页 | 本学科首页   官方微博 | 高级检索  
     


Adaptive evolution of metabolic pathways in Drosophila
Authors:Flowers J M  Sezgin E  Kumagai S  Duvernell D D  Matzkin L M  Schmidt P S  Eanes W F
Affiliation:Department of Ecology and Evolution, Stony Brook University, NY, USA. jmflower@life.bio.sunysb.edu
Abstract:The adaptive significance of enzyme variation has been of central interest in population genetics. Yet, how natural selection operates on enzymes in the larger context of biochemical pathways has not been broadly explored. A basic expectation is that natural selection on metabolic phenotypes will target enzymes that control metabolic flux, but how adaptive variation is distributed among enzymes in metabolic networks is poorly understood. Here, we use population genetic methods to identify enzymes responding to adaptive selection in the pathways of central metabolism in Drosophila melanogaster and Drosophila simulans. We report polymorphism and divergence data for 17 genes that encode enzymes of 5 metabolic pathways that converge at glucose-6-phosphate (G6P). Deviations from neutral expectations were observed at five loci. Of the 10 genes that encode the enzymes of glycolysis, only aldolase (Ald) deviated from neutrality. The other 4 genes that were inconsistent with neutral evolution (glucose-6-phosphate dehydrogenase [G6pd]), phosphoglucomutase [Pgm], trehalose-6-phosphate synthetase [Tps1], and glucose-6phosphatase [G6pase] encode G6P branch point enzymes that catalyze reactions at the entry point to the pentose-phosphate, glycogenic, trehalose synthesis, and gluconeogenic pathways. We reconcile these results with population genetics theory and existing arguments on metabolic regulation and propose that the incidence of adaptive selection in this system is related to the distribution of flux control. The data suggest that adaptive evolution of G6P branch point enzymes may have special significance in metabolic adaptation.
Keywords:positive selection    network evolution    population genomics    adaptation    systems biology
本文献已被 PubMed Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号