首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Nitric oxide evolution and perception
Authors:Neill Steven  Bright Jo  Desikan Radhika  Hancock John  Harrison Judith  Wilson Ian
Institution:Centre for Research in Plant Science, Faculty of Applied Sciences, University of the West of England, Bristol, Bristol BS16 1Q, UK. Steven.Neill@uwe.ac.uk
Abstract:Various experimental data indicate signalling roles for nitric oxide (NO) in processes such as xylogenesis, programmed cell death, pathogen defence, flowering, stomatal closure, and gravitropism. However, it still remains unclear how NO is synthesized. Nitric oxide synthase-like activity has been measured in various plant extracts, NO can be generated from nitrite via nitrate reductase and other mechanisms of NO generation are also likely to exist. NO removal mechanisms, for example, by reaction with haemoglobins, have also been identified. NO is a gas emitted by plants, with the rate of evolution increasing under conditions such as pathogen challenge or hypoxia. However, exactly how NO evolution relates to its bioactivity in planta remains to be established. NO has both aqueous and lipid solubility, but is relatively reactive and easily oxidized to other nitrogen oxides. It reacts with superoxide to form peroxynitrite, with other cellular components such as transition metals and haem-containing proteins and with thiol groups to form S-nitrosothiols. Thus, diffusion of NO within the plant may be relatively restricted and there might exist 'NO hot-spots' depending on the sites of NO generation and the local biochemical micro-environment. Alternatively, it is possible that NO is transported as chemical precursors such as nitrite or as nitrosothiols that might function as NO reservoirs. Cellular perception of NO may occur through its reaction with biologically active molecules that could function as 'NO-sensors'. These might include either haem-containing proteins such as guanylyl cyclase which generates the second messenger cGMP or other proteins containing exposed reactive thiol groups. Protein S-nitrosylation alters protein conformation, is reversible and thus, is likely to be of biological significance.
Keywords:Arginine  cyclic GMP  GSNO  haem  nitric oxide  nitrite  perception  peroxynitrite  S-nitrosylation  S-nitrosothiol  superoxide  transport  tyrosine nitration
本文献已被 PubMed Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号