首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Stimulation of A(2A) adenosine receptor phosphorylation by protein kinase C activation: evidence for regulation by multiple protein kinase C isoforms.
Authors:T M Palmer  G L Stiles
Institution:Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom. T.Palmer@bio.gla.ac.uk
Abstract:Activation of the A(2A) adenosine receptor (A(2A)AR) contributes to the neuromodulatory and neuroprotective effects of adenosine in the central nervous system. Here we demonstrate that, in rat C6 glioma cells stably expressing an epitope-tagged canine A(2A)AR, receptor phosphorylation on serine and threonine residues can be increased by pretreatment with either the synthetic protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) or endothelin 1, which increases PKC activity via binding to endogenous endothelin(A) receptors. Under conditions in which PMA was maximally effective, activation of other second messenger-regulated kinases was without effect. While basal and PMA-stimulated phosphorylation were unaffected by the A(2A)AR-selective antagonist ZM241385, they were both blocked by GF109203X (a selective inhibitor of conventional and novel PKC isoforms) and rottlerin (a PKCdelta-selective inhibitor) but not Go6976 (selective for conventional PKC isoforms). However, coexpression of the A(2A)AR with each of the alpha, betaI, and betaII isoforms of PKC increased basal and PMA-stimulated phosphorylation. Mutation of the three consensus PKC phosphorylation sites within the receptor (Thr298, Ser320, and Ser335) to Ala failed to inhibit either basal or PMA-stimulated phosphorylation. In addition, phosphorylation of the receptor was not associated with detectable changes in either its signaling capacity or cell surface expression. These observations suggest that multiple PKC isoforms can stimulate A(2A)AR phosphorylation via activation of one or more downstream kinases which then phosphorylate the receptor directly. In addition, it is likely that phosphorylation controls interactions with regulatory proteins distinct from those involved in the classical cAMP signaling pathway utilized by this receptor.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号