首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Thermal constraints on foraging of tropical canopy ants
Authors:Michelle?Elise?Spicer  Alyssa?Y?Stark  Benjamin?J?Adams  Riley?Kneale  Michael?Kaspari  Email authorEmail author
Institution:1.Department of Biological Sciences,University of Pittsburgh,Pittsburgh,USA;2.Department of Biology,University of Louisville,Louisville,USA;3.Department of Biology,University of Oklahoma,Norman,USA;4.Smithsonian Tropical Research Institute,Balboa,Republic of Panama
Abstract:Small cursorial ectotherms risk overheating when foraging in the tropical forest canopy, where the surfaces of unshaded tree branches commonly exceed 50 °C. We quantified the heating and subsequent cooling rates of 11 common canopy ant species from Panama and tested the hypothesis that ant workers stop foraging at temperatures consistent with the prevention of overheating. We created hot experimental “sunflecks” on existing foraging trails of four ant species from different clades and spanning a broad range of body size, heating rate, and critical thermal maxima (CTmax). Different ant species exhibited very different heating rates in the lab, and these differences did not follow trends predicted by body size alone. Experiments with ant models showed that heating rates are strongly affected by color in addition to body size. Foraging workers of all species showed strong responses to heating and consistently abandoned focal sites between 36 and 44 °C. Atta colombica and Azteca trigona workers resumed foraging shortly after heat was removed, but Cephalotes atratus and Dolichoderus bispinosus workers continued to avoid the heated patch even after >5 min of cooling. Large foraging ants (C. atratus) responded slowly to developing thermal extremes, whereas small ants (A. trigona) evacuated sunflecks relatively quickly, and at lower estimated body temperatures than when revisiting previously heated patches. The results of this study provide the first field-based insight into how foraging ants respond behaviorally to the heterogeneous thermal landscape of the tropical forest canopy.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号