Solution structures and backbone dynamics of the ribosomal protein S6 and its permutant P54‐55 |
| |
Authors: | Anders Öhman Tommy Öman Mikael Oliveberg |
| |
Affiliation: | 1.Department of Chemistry, Umeå University, Umeå SE-901 87, Sweden;2.Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, Stockholm SE-106 91, Sweden |
| |
Abstract: | The ribosomal protein S6 from Thermus thermophilus has served as a model system for the study of protein folding, especially for understanding the effects of circular permutations of secondary structure elements. This study presents the structure of a permutant protein, the 96‐residue P54‐55, and the structure of its 101‐residue parent protein S6wt in solution. The data also characterizes the effects of circular permutation on the backbone dynamics of S6. Consistent with crystallographic data on S6wt, the overall solution structures of both P54‐55 and S6wt show a β‐sheet of four antiparallel β‐strands with two α‐helices packed on one side of the sheet. In clear contrast to the crystal data, however, the solution structure of S6wt reveals a disordered loop in the region between β‐strands 2 and 3 (Leu43‐Phe60) instead of a well‐ordered stretch and associated hydrophobic mini‐core observed in the crystal structure. Moreover, the data for P54‐55 show that the joined wild‐type N‐ and C‐terminals form a dynamically robust stretch with a hairpin structure that complies with the in silico design. Taken together, the results explain why the loop region of the S6wt structure is relatively insensitive to mutational perturbations, and why P54‐55 is more stable than S6wt: the permutant incision at Lys54‐Asp55 is energetically neutral by being located in an already disordered loop whereas the new hairpin between the wild‐type N‐ and C‐termini is stabilizing. |
| |
Keywords: | NMR solution structure backbone dynamics S6 permutant folding |
|
|