首页 | 本学科首页   官方微博 | 高级检索  
     


De novo backbone scaffolds for protein design
Authors:James T. MacDonald  Katarzyna Maksimiak  Michael I. Sadowski  William R. Taylor
Affiliation:Division of Mathematical Biology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA
Abstract:In recent years, there have been significant advances in the field of computational protein design including the successful computational design of enzymes based on backbone scaffolds from experimentally solved structures. It is likely that large‐scale sampling of protein backbone conformations will become necessary as further progress is made on more complicated systems. Removing the constraint of having to use scaffolds based on known protein backbones is a potential method of solving the problem. With this application in mind, we describe a method to systematically construct a large number of de novo backbone structures from idealized topological forms in a top–down hierarchical approach. The structural properties of these novel backbone scaffolds were analyzed and compared with a set of high‐resolution experimental structures from the protein data bank (PDB). It was found that the Ramachandran plot distribution and relative γ‐ and β‐turn frequencies were similar to those found in the PDB. The de novo scaffolds were sequence designed with RosettaDesign, and the energy distributions and amino acid compositions were comparable with the results for redesigned experimentally solved backbones. Proteins 2010. © 2009 Wiley‐Liss, Inc.
Keywords:computational protein design  de novo scaffold construction  coarse‐grained potential energy function  synthetic biology
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号