首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Crystal structure and oligomeric state of the RetS signaling kinase sensory domain
Authors:Xing Jing  Jessica Jaw  Howard H Robinson  Florian David Schubot
Institution:1. Department of Biological Sciences, Life Science I, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060;2. Biology Department, Brookhaven National Laboratory, Upton, New York 11973‐5000
Abstract:The opportunistic pathogen Pseudomonas aeruginosa may cause both acute and chronic‐persistent infections in predisposed individuals. Acute infections require the presence of a functional type III secretion system (T3SS), whereas chronic P. aeruginosa infections are characterized by the formation of drug‐resistant biofilms. The T3SS and biofilm formation are reciprocally regulated by the signaling kinases LadS, RetS, and GacS. RetS downregulates biofilm formation and upregulates expression of the T3SS through a unique mechanism. RetS forms a heterodimeric complex with GacS and thus prevents GacS autophosphorylation and downstream signaling. The signals that regulate RetS are not known but RetS possesses a distinctive periplasmic sensor domain that is believed to serve as receptor for the regulatory ligand. We have determined the crystal structure of the RetS sensory domain at 2.0 Å resolution. The structure closely resembles those of carbohydrate binding modules of other proteins, suggesting that the elusive ligands are likely carbohydrate moieties. In addition to the conserved beta‐sandwich structure, the sensory domain features two alpha helices which create a unique surface topology. Protein–protein crosslinking and fluorescence energy transfer experiments also revealed that the sensory domain dimerizes with a dissociation constant of Kd = 580 ± 50 nM, a result with interesting implications for our understanding of the underlying signaling mechanism. Proteins 2010. © 2009 Wiley‐Liss, Inc.
Keywords:RetS  type III secretion  biofilm formation  sensor kinase  sensory domain  carbohydrate binding  signal transduction  two‐component system  periplasmic domain
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号