首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cooperative interaction of glutamate and aspartate with receptors in the neuromuscular excitatory membrane in walking limbs of the lobster
Authors:R P Shank  A R Freeman
Abstract:When applied to lobster muscle fibers, L-glutamate, L-aspartate, and combinations of the two amino acids can induce membrane depolarization. Under normal conditions, a quantitative analysis of the depolarization response or change in membrane conductance was precluded by nonlinearities in the voltage—current relationship of the membrane. By including γ-aminobutyrate (GABA) in the bathing medium, the voltage—current relationship was made linear in the depolarizing direction over a range of 15–20 mV from the resting potential. However, a meaningful examination of the increase in membrane conductance caused by glutamate and aspartate was still not possible. Therefore, the depolarization responses caused by the excitatory amino acids were taken as a quantitative reflection of receptor activation in the excitatory postsynaptic membrane. In the presence of GABA, aspartate by itself, at concentrations up to 10 mM, had little excitatory activity, whereas glutamate effected an appreciable membrane depolarization at concentrations of 0.1 to 0.2 mM. Aspartate, at concentrations which exhibited no activity alone, markedly enhanced the excitatory action of glutamate. Aspartate shifted the glutamate dose-response curve to the left, but did not appear to affect the maximum depolarization response elicited by glutamate. These observations are consistent with the concept that aspartate increases the affinity between glutamate and the glutamate binding sites. Limiting slopes of log-dose versus log-response curves for the excitatory action of glutamate suggest that the interaction of glutamate with excitatory receptors is a cooperative process. The possibility exists that individual receptors contain multiple and distinct glutamate and aspartate binding sites. These results support the view that neuromuscular excitation in the lobster is mediated by glutamate and asparate functioning synergistically.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号