首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Mechanisms and roles of muscarinic activation in guinea-pig adrenal medullary cells
Authors:Inoue Masumi  Harada Keita  Matsuoka Hidetada  Nakamura Jun  Warashina Akira
Institution:Dept. of Cell and Systems Physiology, Univ. of Occupational and Environmental Health School of Medicine, Kitakyushu 807-8555, Japan. minoue@med.uoeh-u.ac.jp.
Abstract:Muscarinic receptors are expressed in the adrenal medullary (AM) cells of various mammals, but their physiological roles are controversial. Therefore, the ionic mechanism for muscarinic receptor-mediated depolarization and the role of muscarinic receptors in neuronal transmission were investigated in dissociated guinea-pig AM cells and in the perfused guinea-pig adrenal gland. Bath application of muscarine induced an inward current at -60 mV. This inward current was partially suppressed by quinine with an IC(50) of 6.1 μM. The quinine-insensitive component of muscarine-induced currents changed the polarity at -78 mV and was inhibited by bupivacaine, a TWIK-related acid-sensitive K(+) (TASK) channel inhibitor. Conversely, the current-voltage relationship for the bupivacaine-insensitive component of muscarine currents showed a reversal potential of -5 mV and a negative slope below -40 mV. External application of La(3+) had a double action on muscarine currents of both enhancement and suppression. Immunoblotting and immunocytochemistry revealed expression of TASK1 channels and cononical transient receptor potential channels 1, 4, 5, and 7 in guinea-pig AM cells. Retrograde application of atropine reversibly suppressed transsynaptically evoked catecholamine secretion from the adrenal gland. The results indicate that muscarinic receptor stimulation in guinea-pig AM cells induces depolarization through inhibition of TASK channels and activation of nonselective cation channels and that muscarinic receptors are involved in neuronal transmission from the splanchnic nerve.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号