首页 | 本学科首页   官方微博 | 高级检索  
     


Physiologically based mathematical model of transduction of mechanobiological signals by osteocytes
Authors:Ridha Hambli  Romain Rieger
Affiliation:1. PRISME Institute, University of Orleans, 8 rue Léonard deVinci, 45072, Orléans cedex 2, France
Abstract:Developing mathematical models describing the bone transduction mechanisms, including mechanical and metabolic regulations, has a clear practical applications in bone tissue engineering. The current study attempts to develop a plausible physiologically based mathematical model to describe the mechanotransduction in bone by an osteocyte mediated by the calcium-parathyroid hormone regulation and incorporating the nitric oxide (NO) and prostaglandin E2 (PGE2) effects in early responses to mechanical stimulation. The inputs are mechanical stress and calcium concentration, and the output is a stimulus function corresponding to the stimulatory signal to osteoblasts. The focus will be on the development of the mechanotransduction model rather than investigating the bone remodeling process that is beyond the scope of this study. The different components of the model were based on both experimental and theoretical previously published results describing some observed physiological events in bone mechanotransduction. Current model is a dynamical system expressing the mechanotransduction response of a given osteocyte with zero explicit space dimensions, but with a dependent variable that records signal amplitude as a function of mechanical stress, some metabolic factors release, and time. We then investigated the model response in term of stimulus signal variation versus the model inputs. Despite the limitations of the model, predicted and experimental results from literature have the same trends.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号