首页 | 本学科首页   官方微博 | 高级检索  
     


Photosystem II efficiency and mechanisms of energy dissipation in iron-deficient,field-grown pear trees (Pyrus communis L.)
Authors:Morales  Fermín  Belkhodja   Ramzi  Abadía  Anunciación  Abadía  Javier
Affiliation:(1) Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (C.S.I.C.), Apdo. 202, E-50080 Zaragoza, Spain
Abstract:The dark-adapted Photosystem II efficiency of field-grown pear leaves, estimated by the variable to maximum chlorophyll fluorescence ratio, was little affected by moderate and severe iron deficiency. Only extremely iron-deficient leaves showed a decreased Photosystem II efficiency after dark adaptation. Midday depressions in Photosystem II efficiency were still found after short-term dark-adaptation in iron-deficient leaves, indicating that Photosystem II down-regulation occurred when the leaves were illuminated by excessive irradiance. The actual Photosystem II efficiency at steady-state photosynthesis was decreased by iron deficiency both early in the morning and at midday, due to closure of Photosystem II reaction centers and decreases of the intrinsic Photosystem II efficiency. Iron deficiency decreased the amount of light in excess of that which can be used in photosynthesis not only by decreasing absorptance, but also by increasing the relative amount of light dissipated thermally by the Photosystem II antenna. When compared to the controls, iron-deficient pear leaves dissipated thermally up to 20% more of the light absorbed by the Photosystem II, both early in the morning and at midday. At low light iron-deficient leaves with high violaxanthin cycle pigments to chlorophyll ratios had increases in pigment de-epoxidation, non-photochemical quenching and thermal dissipation. Our data suggest that DeltapH could be the major factor controlling thermal energy dissipation, and that large (more than 10-fold) changes in the zeaxanthin plus antheraxanthin to chlorophyll molar ratio caused by iron deficiency were associated only to moderate increases in the extent of photoprotection.This revised version was published online in October 2005 with corrections to the Cover Date.
Keywords:chlorophyll fluorescence  energy dissipation  field-grown pear  iron deficiency  Photosystem II efficiency  Pyrus communis
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号