首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effect of Hydrologic and Geochemical Conditions on Oxygen-Enhanced Bioremediation in a Gasoline-Contaminated Aquifer
Authors:James E Landmeyer  Paul M Bradley
Institution:U.S. Geological Survey, 720 Gracern Road, Suite 129, Columbia, SC 29210, USA
Abstract:Oxygen addition to enhance bioremediation of gasoline-contaminated ground water was performed in two locations of a shallow aquifer in South Carolina characterized by benzene, toluene, and methyl tert-butyl ether (MTBE) at concentrations greater than 1 mg/L, respectively. Oxygen addition with an oxygen-release compound (a proprietary form of magnesium peroxide MgO2]) produced markedly different results with respect to dissolved oxygen (DO) generation and contaminant decrease in the two locations. Oxygen-release compound injected at the former underground storage tank (UST) source area did not significantly change measured concentrations of DO, benzene, toluene, or MTBE. Conversely, oxygen-release compound injected 200 m downgradient of the former UST source area rapidly increased DO levels, and benzene, toluene, and MTBE concentrations decreased substantially. The different results can be related to differences in hydrologic and geochemical conditions that characterized the two locations prior to oxygen addition. For example, the contaminated aquifer downgradient of the former UST source area was anoxic, but frequently received oxygen-saturated recharge during rainfall events. As such, the aquifer was characterized by low concentrations of reduced species (such as ferrous iron (Fe2+), as well as relatively high numbers of aerobic heterotrophic bacteria (as most probable number MPN] per milliliter). In contrast, recharge does not occur in the paved, former UST source area. The anoxic aquifer was characterized by higher concentrations of Fe2+ that exerted a significant chemical oxygen demand on the oxygen injected, and much lower numbers of aerobic heterotrophic bacteria. The results of this investigation indicate the important role that pre-existing hydrologic, geochemical, and microbiologic conditions have on the outcome of oxygen-based remediation strategies, and suggest that these properties should be evaluated prior to the implementation of oxygen-based remedial strategies.
Keywords:BTEX  MTBE  oxygen  recharge  microbiology
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号