首页 | 本学科首页   官方微博 | 高级检索  
   检索      


SAUR proteins and PP2C.D phosphatases regulate H+-ATPases and K+ channels to control stomatal movements
Authors:Jeh Haur Wong  Martina Klejchov  Stephen A Snipes  Punita Nagpal  Gwangbae Bak  Bryan Wang  Sonja Dunlap  Mee Yeon Park  Emma N Kunkel  Brendan Trinidad  Jason W Reed  Michael R Blatt  William M Gray
Institution:1. Department of Plant and Microbial Biology, University of Minnesota, St Paul, Minnesota 55108, USA;2. Laboratory of Plant Physiology and Biophysics, University of Glasgow, Glasgow G12 8QQ, UK;3. Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
Abstract:Activation of plasma membrane (PM) H+-ATPase activity is crucial in guard cells to promote light-stimulated stomatal opening, and in growing organs to promote cell expansion. In growing organs, SMALL AUXIN UP RNA (SAUR) proteins inhibit the PP2C.D2, PP2C.D5, and PP2C.D6 (PP2C.D2/5/6) phosphatases, thereby preventing dephosphorylation of the penultimate phosphothreonine of PM H+-ATPases and trapping them in the activated state to promote cell expansion. To elucidate whether SAUR–PP2C.D regulatory modules also affect reversible cell expansion, we examined stomatal apertures and conductances of Arabidopsis thaliana plants with altered SAUR or PP2C.D activity. Here, we report that the pp2c.d2/5/6 triple knockout mutant plants and plant lines overexpressing SAUR fusion proteins exhibit enhanced stomatal apertures and conductances. Reciprocally, saur56 saur60 double mutants, lacking two SAUR genes normally expressed in guard cells, displayed reduced apertures and conductances, as did plants overexpressing PP2C.D5. Although altered PM H+-ATPase activity contributes to these stomatal phenotypes, voltage clamp analysis showed significant changes also in K+ channel gating in lines with altered SAUR and PP2C.D function. Together, our findings demonstrate that SAUR and PP2C.D proteins act antagonistically to facilitate stomatal movements through a concerted targeting of both ATP-dependent H+ pumping and channel-mediated K+ transport.

SMALL AUXIN UP RNA (SAUR) proteins and PP2C.D phosphatases antagonistically regulate stomatal aperture in Arabidopsis by modulating the activities of plasma membrane H+-ATPases and K+ channels.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号