首页 | 本学科首页   官方微博 | 高级检索  
     


A pH-dependent interaction between histones H2A and H2B involving secondary and tertiary folding.
Authors:T Moss  P D Cary  B D Abercrombie  C Crane-Robinson  E M Bradbury
Abstract:It has been shown by high-resolution proton magnetic resonance (PMR) spectroscopy and circular dichroism (CD) that an H2A/H2B histone complex exists after salt extraction of these histones from chromatin and that this complex can be fully renatured from both urea-denatured acid-extracted and from urea-denatured salt-extracted histones. The histone complex is shown to involve specific secondary and tertiary structure. Formation of this complex is observed to be critically dependent on pH, occurring at and above pH 5. It cannot be induced below pH 5 by increase in ionic strength. From CD spectra the H2A/H2B complex is shown to contain about 37% alpha helix but no beta structure, the latter being confirmed by infrared spectroscopy in the 6-mum region. The PMR spectra show that the structured region includes most of the aromatic residues of both histones, at least two histidine residues of H2B and probably histidines 31 and 82 of histone H2A. The secondary structure of histones H2A and H2B is predicted using the Chou and Fasman procedure and comparisons are made between the predictions for histones of different species. These results in conjunction with the experimental evidence lead to the conclusion that at least residues 31-95 of H2A and residues 37-114 of H2B, i.e. the more apolar regions of the molecules, are involved in the tertiary structure of the H2A/H2B complex.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号