首页 | 本学科首页   官方微博 | 高级检索  
     


Chemical hypoxia triggers apoptosis of cultured neonatal rat cardiac myocytes: Modulation by calcium-regulated proteases and protein kinases
Authors:Chen  Shu Jen  Bradley   Michael E.  Lee  Te Chung
Affiliation:(1) Department of Biochemistry, State University of New York at Buffalo, 3435 Main Street, 140 Farber Hall, Buffalo, NY 14214, USA
Abstract:Myocardial infarctions and stroke arise primarily as a result of hypoxia/ischemia-induced cell injury. However, the molecular mechanism of cardiac cell death due to hypoxia has not been elucidated. We showed here that chemical hypoxia induced by 1 mM azide triggered apoptosis of isolated neonatal rat ventricular cardiac myocytes but had no effect on cardiac fibroblasts. The azide-induced cardiomyocyte apoptosis could be characterized by a reversible initiation phase (0-6 h after azide exposure) during which cytosolic ATP levels remained little affected. This was followed by an irreversible execution phase (12-18 h) exhibiting prominent internucleosomal DNA fragmentation, cell membrane leakage, mitochondrial dysfunction, and increased calpain messenger RNA. Blocking extracellular calcium influx or intracellular calcium release was each effective in suppressing myocyte apoptosis. Cell death was also found to be mediated by calcium sensitive signal transduction events based on the use of specific antagonists. Consistent with the induction of calpain expression during apoptosis, blocking de novo protein synthesis and calpain activity inhibited cell death. These regulatory features coupled with the ease of the cell system suggest that the myocyte apoptosis model described here should be useful in the study of events leading to the demise of the myocardium.
Keywords:apoptosis  cardiomyocyte  azide  hypoxia  word  calpain
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号