首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Carbohydrate binding module recognition of xyloglucan defined by polar contacts with branching xyloses and CH‐Π interactions
Authors:Laura von Schantz  Maria Håkansson  Derek T Logan  Eva Nordberg‐Karlsson  Mats Ohlin
Institution:1. Department of Immunotechnology, Lund University, Medicon Village, , Sweden;2. SARomics Biostructures AB, , Sweden;3. Department of Biochemistry and Structural Biology, Lund University, , Sweden;4. Department of Biotechnology, Lund University, , Sweden
Abstract:Engineering of novel carbohydrate‐binding proteins that can be utilized in various biochemical and biotechnical applications would benefit from a deeper understanding of the biochemical interactions that determine protein‐carbohydrate specificity. In an effort to understand further the basis for specificity we present the crystal structure of the multi‐specific carbohydrate‐binding module (CBM) X‐2 L110F bound to a branched oligomer of xyloglucan (XXXG). X‐2 L110F is an engineered CBM that can recognize xyloglucan, xylans and β‐glucans. The structural observations of the present study compared with previously reported structures of X‐2 L110F in complex with linear oligomers, show that the π‐surface of a phenylalanine, F110, allows for interactions with hydrogen atoms on both linear (xylopentaose and cellopentaose) and branched ligands (XXXG). Furthermore, X‐2 L110F is shown to have a relatively flexible binding cleft, as illustrated in binding to XXXG. This branched ligand requires a set of reorientations of protein side chains Q72, N31, and R142, although these residues have previously been determined as important for binding to xylose oligomers by mediating polar contacts. The loss of these polar contacts is compensated for in binding to XXXG by polar interactions mediated by other protein residues, T74, R115, and Y149, which interact mainly with the branching xyloses of the xyloglucan oligomer. Taken together, the present study illustrates in structural detail how CH‐π interactions can influence binding specificity and that flexibility is a key feature for the multi‐specificity displayed by X‐2 L110F, allowing for the accommodation of branched ligands. Proteins 2014; 82:3466–3475. © 2014 Wiley Periodicals, Inc.
Keywords:multi‐specificity  cross‐reactive carbohydrate recognition  reorientation of amino acids  aromatic side chains  protein engineering
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号