首页 | 本学科首页   官方微博 | 高级检索  
     


Mon1a protein acts in trafficking through the secretory apparatus
Authors:Bagley Dustin C  Paradkar Prasad N  Kaplan Jerry  Ward Diane M
Affiliation:Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah 84132, USA.
Abstract:Mon1a was originally identified as a modifier gene of vesicular traffic, as a mutant Mon1a allele resulted in increased localization of cell surface proteins, whereas reduced levels of Mon1a showed decreased secretory activity. Here we show that Mon1a affects different steps in the secretory pathway including endoplasmic reticulum-to-Golgi traffic. siRNA-dependent reduction of Mon1a levels resulted in a delay in the reformation of the Golgi apparatus after Brefeldin A treatment. Endoglycosidase H treatment of ts045VSVG-GFP confirmed that knockdown of Mon1a delayed endoplasmic reticulum-to-Golgi trafficking. Reductions in Mon1a also resulted in delayed trafficking from Golgi to the plasma membrane. Immunoprecipitation and mass spectrometry analysis showed that Mon1a associates with dynein intermediate chain. Reductions in Mon1a or dynein altered steady state Golgi morphology. Reductions in Mon1a delayed formation of ERGIC-53-positive vesicles, whereas reductions in dynein did not affect vesicle formation. These data provide strong evidence for a role for Mon1a in anterograde trafficking through the secretory apparatus.
Keywords:Dynein   Endoplasmic Reticulum (ER)   Golgi   Secretion   Transport   Mon1a
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号