Laccase-poly(lactic-co-glycolic acid) (PLGA) nanofiber: highly stable, reusable, and efficacious for the transformation of diclofenac |
| |
Authors: | Sathishkumar Palanivel Chae Jong-Chan Unnithan Afeesh R Palvannan Thayumanavan Kim Hak Yong Lee Kui-Jae Cho Min Kamala-Kannan Seralathan Oh Byung-Taek |
| |
Affiliation: | Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Jeonbuk 570-752, South Korea. |
| |
Abstract: | Nanobiocatalysis has received growing attention for use in commercial applications. We investigated the efficiency, stability, and reusability of laccase-poly(lactic-co-glycolic acid) (PLGA) nanofiber for diclofenac transformation. NH stretching vibrations (3400-3500 cm(-1) and 1560 cm(-1)) in FT-IR spectra confirmed immobilization of laccase on PLGA nanofibers. The relative activity of immobilized laccase was 82% that of free laccase. Immobilized laccase had better storage, pH, and thermal stability than free laccase. The immobilized laccase produced complete diclofenac transformation in three reuse cycles, which was extended to 6 cycles in the presence of syringaldehyde. Results suggest that laccase-PLGA nanofiber may be useful for removing diclofenac from aqueous sources and has potential for other commercial applications. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|