首页 | 本学科首页   官方微博 | 高级检索  
     


Chemical specificity in short-chain fatty acids and their analogues in increasing osmotic fragility in rat erythrocytes in vitro
Authors:Hitoshi Mineo
Affiliation:Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita-9, Nishi-9, Sapporo, Hokkaido 060-8589, Japan
Abstract:We examined the role of the chemical specificity of short-chain fatty acids (SCFAs) and their derivatives in increasing osmotic fragility (OF) in rat red blood cells (RBCs). Except for formic acid, normal SCFAs with 2 to 8 carbons increased the OF in rat RBCs with increasing number of hydrocarbons in a dose-dependent manner. Replacement of the carboxylic group with sulfonic group inhibited, but did not abolish, the SCFA-mediated increase in OF. Introduction of another carboxylic group (dicarboxylic acids) completely abolished the SCFA-mediated increase in OF. Transformation of the hydrocarbon chains in SCFAs from straight to branched or cyclic chains affected the degree of the OF-increasing effect. Introduction of double- or triple-carbon bonds to the hydrocarbon chain in parent SCFAs did not affect the increase in OF. Both hydrophilic (carboxylic group) and hydrophobic elements (hydrocarbons) at opposite sides of a molecule were required to affect the RBC membrane, and the size and form of hydrophobic element were important factors in determining the SCFA-mediated increase in OF. The hydrocarbon chains probably enter the plasma membrane, with the hydrophilic carboxylic base remaining outside of the membrane, and interact with phospholipid in cell membrane and disturb the structure of lipid layer resulting in the increase in OF in the rat RBCs.
Keywords:SCFA   RBC   Erythrocyte   Membrane   Osmotic fragility   Rat
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号