首页 | 本学科首页   官方微博 | 高级检索  
     


Activity of chimeric RNAs of U6 snRNA and (-)sTRSV in the cleavage of a substrate RNA.
Authors:T Tani   Y Takahashi     Y Ohshima
Affiliation:Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan.
Abstract:U6 small nuclear RNA is one of the spliceosomal RNAs essential for pre-mRNA splicing. Discovery of mRNA-type introns in the highly conserved region of the U6 snRNA genes led to the hypothesis that U6 snRNA functions as a catalytic element during pre-mRNA splicing. The highly conserved region of U6 snRNA has a structural similarity with the catalytic domain of the negative strand of the satellite RNA of tobacco ring spot virus [(-)sTRSV], suggesting that the highly conserved region of U6 snRNA forms the catalytic center. We examined whether synthetic RNAs consisting of the sequence of the highly conserved region of U6 snRNA or various chimeric RNAs between the U6 region and the catalytic RNA of (-)sTRSV could cleave a substrate RNA that can partially base-pair with them and have a GU sequence. Chimeric RNAs with 70 to 83% sequence identity with the conserved region of S. pombe U6 snRNA cleaved the substrate RNA at the 5' side of the GU sequence, which is shared by the 5' end of an intron in a pre-mRNA. We found that the highly conserved region of U6 snRNA and the catalytic domain of (-)sTRSV are strikingly similar in structure to the catalytic core region of the group I self-splicing intron in cyanobacteria. These results suggest that U6 snRNA, (-)sTRSV and the group I self-splicing intron originated from a common ancestral RNA, and support the hypothesis that U6 snRNA catalyzes pre-mRNA splicing reaction.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号