首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Comparison of the electromechanical responsiveness of alpha-1-adrenoceptor stimulation in ventricles of normal and cardiomyopathic hamsters
Authors:Wen-Pin Chen  Ming-Jai Su PhD
Institution:Pharmacological Institute, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC.
Abstract:Alterations in alpha(1)-adrenoceptor (alpha(1)AR) density and related signal transduction proteins were reported in cardiomyopathic hearts in the failing stage. The electromechanical modification of alpha(1)-adrenergic stimulation in the failing heart is unclear. The present study compares the alpha(1)AR-stimulated electromechanical response in failing ventricles of genetically cardiomyopathic BIO 14.6 hamsters (280-320 days old) with that in age-matched normal Syrian hamsters. The action potential was recorded with a conventional microelectrode technique, and twitch force was measured with a transducer. In the presence of propranolol, phenylephrine increased the contraction and prolonged the action potential duration (APD) to similar values in ventricles of both strains, despite a prolonged basal APD in cardiomyopathic ventricles. The positive inotropism stimulated by phenylephrine was inhibited by staurosporine, and was potentiated by 4 beta-phorbol-12,13-dibutyrate (PDBu) in both strains. The maximum positive inotropic effect of phenylephrine in PDBu-treated ventricles of normal hamsters was significantly greater than that in BIO 14.6 hamsters. The effects of phenylephrine on the ventricular force-frequency relationship and on the mechanical restitution in both normal and BIO 14.6 strain hamsters were examined. The uniform negative force-frequency relationship and the altered mechanical restitution reveal a defect of intracellular Ca(2+) handling in cardiomyopathic BIO 14.6 hamsters. alpha(1)-Adrenergic modulation cannot convert the defective properties in the model of the failing heart. Nevertheless, phenylephrine decreased post-rest potentiation in short rest periods, and enhanced post-rest decay after longer resting periods. The results indicate that alpha(1)-adrenergic action enhances a gradual loss of Ca(2+) from the sarcoplasmic reticulum, although its action in prolonging the APD can indirectly increase the influx of Ca(2+).
Keywords:agr-Adrenoceptor" target="_blank">gif" alt="agr" align="BASELINE" BORDER="0">-Adrenoceptor  Phenylephrine  Protein kinase C  Cardiomyopathic BIO 14  6 hamster
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号