首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Allorecognition and chimerism in an invertebrate model organism
Abstract:The presence of highly specific histocompatibility reactions in colonial marine invertebrates that lack adaptive immune systems (such as the sponges, cnidarians, bryozoans, and ascidians) provides a unique opportunity to investigate the evolutionary roots of allorecognition and to explore whether homologous innate recognition systems exist in vertebrates. Conspecific interactions among adult animals in these groups are regulated by highly specific allorecognition systems that restrict somatic fusion to self or close kin. In Hydractinia (Cnidaria:Hydrozoa), fusion/rejection responses are controlled by two linked genetic loci. Alleles at each locus are co-dominantly inherited. Colonies fuse if they share at least one haplotype, reject if they share no haplotypes, and display transitory fusion if they share only one allele in a haplotype – a pattern that echoes natural killer cell responses in mice and humans. Allorecognition in Hydractinia and other marine invertebrates serves as a safeguard against stem cell or germline parasitism thus, limiting chimerism to closely related individuals. These animals fail to become tolerant even if exposed during early development to cells from a histoincompatible individual. Detailed analysis of the structure and function of molecules responsible for allorecognition in basal marine invertebrates could provide clues to the innate mechanisms by which higher animals respond to organ and cell allografts, including embryonic tissues.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号