首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Study of the O-Ru-N bonding in trans-[Ru(NH3)4(SO4)L] complexes (L=imidazole, histidine and substituted pyridines): a X-ray, EPR, spectroscopic and theoretical MO study
Authors:Hildo ASantos Silva  Ademir J Camargo  Regina Helena de Almeida Santos  Douglas Wagner Franco
Abstract:Spectroscopic studies on trans-Ru(NH3)4(SO4)L]+ where L=imidazole, histidine, pyridine and substituted pyridines were undertaken to understand the effect of various ligands on the Ru-N bonding in these complexes. The sulfate complexes show two major bands in the 250-270 and 310-350 nm region of the UV-Vis spectrum. Based on quantum chemical calculations the lowest energy band has been assigned to a LMCT (SO4 2− → RuIII) transition. The energy of the LMCT transition decreases as the order of the axial ligand L basicity: Him > L-hist > 4-NH2-py > 4-Cl-py > 4-pic > py > nia > 4-Cn-py > isn > pz. EPR spectra give only two g values showing that the two LUMO containing the metal dπ orbitals are degenerate and the energy separation between the LUMO and HOMO, calculated from the g values correlates linearly with the charge transfer energy and electrochemical properties. These correlations suggest extensive π donation from L to the Ru(III) d orbitals. An X-ray study of the 4-pic complex shows a bent S-O-Ru bond of 127.5° and MO calculations for three other complexes predict similar angles due to extensive σ and π bonding interaction between the sulfate oxygen and the Ru(III) ion. Surprisingly, the MO calculations do not predict the observed degeneracy in the LUMO orbital found by EPR studies. We shall argue that these discrepancies can be reconciled by insisting that the orientation of the L ring be coplanar with the S-O-Ru plane as is the case in the one X-ray study.
Keywords:Spectroscopy  Electrochemistry  Ru(III) complexes  EPR  Molecular orbital calculations
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号