首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Monomeric versus dimeric structures in ternary complexes of manganese(II) with derivatives of benzoic acid and nitrogenous bases: structural details and spectral properties
Authors:Eugenio Garribba  Michele Zema
Institution:a Department of Chemistry, University of Sassari, Via Vienna 2, I-07100 Sassari, Italy
b Department of Earth Sciences, University of Pavia, Via Ferrata 1, I-27100 Pavia, Italy
Abstract:Adducts formed by Mn(2,6-dmb)2(H2O)3]n · nH2O, 2,6-dmb=2,6-dimethoxybenzoate(1-), Mn(2,4-dhb)2 · 8H2O, Mn(2,5-dhb)2 · 4H2O or Mn(2,6-dhb)2 · 8H2O, dhb=dihydroxybenzoate(1-), and 2,2-bipyridine (bpy), 4,4-dimethyl-2,2-bipyridine (Me2bpy) or 4,7-dimethyl-1,10-phenanthroline (Me2phen) were isolated in the solid state and characterised by IR, EPR and thermogravimetry. Two of them, Mn(2,6-dhb)2(bpy)2] (1) and Mn2(2,6-dmb)4(Me2Phen)2(H2O)2] · 2EtOH (2), were studied by single crystal X-ray diffraction. The adduct 1 is mononuclear and consists of hexa-co-ordinate manganese(II) ions bound to two bipyridine and two 2,6-dihydroxybenzoate ligands in a cis-octahedral arrangement. The complex 2 exhibits a dinuclear structure in which two manganese(II) ions share two carboxylate groups adopting a rather uncommon single-atom bridging mode. The results allow us to conclude that weak, e.g., hydrogen bonding and stacking interactions govern the type of structure, monomeric or dimeric. The spectral features of the complexes are discussed. In particular, the solid-state EPR features of the complexes are interpreted in terms of D, E and Hmax, the high-field resonance. For the monomeric species, the higher is the D value, the higher is Hmax.
Keywords:Manganese(II) complexes  Enzyme models  Hydrogen bonds  Stacking interactions  EPR spectroscopy
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号