首页 | 本学科首页   官方微博 | 高级检索  
     


Thermodynamics of oxidation-reduction reactions in mammalian nitric-oxide synthase isoforms
Authors:Gao Ying Tong  Smith Susan M E  Weinberg J Brice  Montgomery Heather J  Newman Elena  Guillemette J Guy  Ghosh Dipak K  Roman Linda J  Martasek Pavel  Salerno John C
Affiliation:Biology Department, Rensselaer Polytechnic Institute, Troy, New York 12180, USA.
Abstract:The three mammalian nitric-oxide synthases produce NO from arginine in a reaction requiring 3 electrons per NO, which are supplied to the catalytic center from NADPH through reductase domains incorporating FAD and FMN cofactors. The isoforms share a common reaction mechanism and requirements for reducing equivalents but differ in regulation; the endothelial and neuronal isoforms are controlled by calcium/calmodulin modulation of the electron transfer system, while the inducible isoform binds calmodulin at all physiological Ca(2+) concentrations and is always on. The thermodynamics of electron transfer through the flavin domains in all three isoforms are basically similar. The major flavin states are FMN, FMNH., FMNH(2), FAD, FADH., and FADH(2). The FMN/FMNH. couple is high potential ( approximately 100 mV) in all three isoforms and is unlikely to be catalytically competent; the other three flavin couples form a nearly isopotential group clustered around -250 mV. Reduction of the flavins by the pyridine nucleotide couple at -325 mV is thus moderately thermodynamically favorable. The ferri/ferroheme couple in all three isoforms is approximately -270 mV in the presence of saturating arginine. Ca(2+)/calmodulin has no effect on the potentials of any of the couples in endothelial nitric-oxide synthase (eNOS) or neuronal nitric-oxide synthase (nNOS). The pH dependence of the flavin couples suggests the presence of ionizable groups coupled to the flavin redox/protonation states.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号