Rogue Sperm Indicate Sexually Antagonistic Coevolution in Nematodes |
| |
Authors: | Ronald E. Ellis Lukas Sch?rer |
| |
Affiliation: | 1.Department of Molecular Biology, Rowan University SOM, Stratford, New Jersey, United States of America;2.Evolutionary Biology, Zoological Institute, University of Basel, Basel, Switzerland |
| |
Abstract: | Intense reproductive competition often continues long after animals finish mating. In many species, sperm from one male compete with those from others to find and fertilize oocytes. Since this competition occurs inside the female reproductive tract, she often influences the outcome through physical or chemical factors, leading to cryptic female choice. Finally, traits that help males compete with each other are sometimes harmful to females, and female countermeasures may thwart the interests of males, which can lead to an arms race between the sexes known as sexually antagonistic coevolution. New studies from Caenorhabditis nematodes suggest that males compete with each other by producing sperm that migrate aggressively and that these sperm may be more likely to win access to oocytes. However, one byproduct of this competition appears to be an increased probability that these sperm will go astray, invading the ovary, prematurely activating oocytes, and sometimes crossing basement membranes and leaving the gonad altogether. These harmful effects are sometimes observed in crosses between animals of the same species but are most easily detected in interspecies crosses, leading to dramatically lowered fitness, presumably because the competitiveness of the sperm and the associated female countermeasures are not precisely matched. This mismatch is most obvious in crosses involving individuals from androdioecious species (which have both hermaphrodites and males), as predicted by the lower levels of sperm competition these species experience. These results suggest a striking example of sexually antagonistic coevolution and dramatically expand the value of nematodes as a laboratory system for studying postcopulatory interactions.On the Origin of Species focused almost exclusively on the role of natural selection in evolution [1], but Darwin realized that animals also compete for mates and described the process of sexual selection at length in a later book [2]. The simplest examples involve combat like that between male elephant seals fighting for access to females. However, sexual selection also includes many other types of interactions. For example, some male birds have elaborate plumage because females favor this trait when choosing mates (reviewed in [3]). In their simplest form, these interactions can be thought of as parts of a triangle—competition between two males forming the base and the interactions between each of the males and the female forming the two legs. |
| |
Keywords: | |
|
|