首页 | 本学科首页   官方微博 | 高级检索  
     


AGGF1 protects from myocardial ischemia/reperfusion injury by regulating myocardial apoptosis and angiogenesis
Authors:Yu Liu  Hui Yang  Lina Song  Nan Li  Qiu-Yue Han  Cui Tian  Erhe Gao  Jie Du  Yun-Long Xia  Hui-Hua Li
Affiliation:1. Department of Pathology, Physiology and Pathophysiology, Beijing AnZhen Hospital the Key Laboratory of Remodeling-Related Cardiovascular Diseases, School of Basic Medical Sciences, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
2. Department of Cardiology, Chaoyang Hospital, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
3. Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA, 19140, USA
4. Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
Abstract:Angiogenic factor with G patch and FHA domains 1 (AGGF1) is a newly identified proangiogenic protein, which plays an important role in vascular disease and angiogenesis. However, its role in myocardial ischemia/reperfusion (I/R) injury remains unknown. This study investigated whether AGGF1 is involved in the pathogenesis of mouse myocardial I/R injury and the underlying mechanisms. Wild-type (WT) C57BL/6 J mice were treated at 30 min prior to I/R injury with anti-AGGF1 neutralizing antibody (3 mg/kg) or recombinant human AGGF1 (rhAGGF1, 0.25 mg/kg). After I/R injury, the infarct size, the number of TUNEL-positive cardiomyocytes, Bax/Bcl2 ratio, inflammatory cytokine expression and angiogenesis were markedly increased as compared with sham control. Treatment of WT mice with anti-AGGF1 neutralizing antibody resulted in exaggeration of myocardial I/R injury but reducing angiogenesis. In contrast, administration of rhAGGF1 markedly reversed these effects. Furthermore, anti-AGGF1- or rhAGGF1-mediated effects on I/R-induced cardiac apoptosis, inflammation and angiogenesis were dose dependent. In addition, the protective effects of AGGF1 on cardiomyocyte apoptosis and inflammation were confirmed in cultured cardiomyocytes after I/R. Finally, these effects were associated with activation of ERK1/2, Stat3 and HIF-1α/VEGF pathways and inhibition of activation of NF-κB, p53 and JNK1/2 pathways. In conclusion, we report the first in vivo and in vitro evidence that AGGF1 reduces myocardial apoptosis and inflammation and enhances angiogenesis, leading to decreased infarct size after I/R injury. These results may provide a novel therapeutic approach for ischemic heart diseases.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号