首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Evolution of the Isd11-IscS complex reveals a single alpha-proteobacterial endosymbiosis for all eukaryotes
Authors:Richards Thomas A  van der Giezen Mark
Institution:* School of Biosciences, University of Exeter, Exeter, United Kingdom; and {dagger} School of Biological and Chemical Sciences, Queen Mary, University of London, London, United Kingdom
Abstract:Giardia and Trichomonas are eukaryotes without standard mitochondria but contain mitochondrial-type alpha-proteobacterium-derived iron-sulfur cluster (ISC) assembly proteins, located to mitosomes in Giardia and hydrogenosomes in Trichomonas. Although these data suggest a single common endosymbiotic ancestry for mitochondria, mitosomes, and hydrogenosomes, separate origins are still being proposed. Here, we present a bioinformatic analysis of Isd11, a recently described essential component of the mitochondrial ISC assembly pathway. Isd11 is unique to eukaryotes but functions closely with the alpha-proteobacterium-derived cysteine desulfurase IscS. We demonstrate the presence of homologues of Isd11 in all 5 eukaryotic supergroups sampled, including hydrogenosomal and mitosomal lineages. The eukaryotic invention of Isd11 as a functional partner to IscS directly implies a single shared alpha-proteobacterial endosymbiotic ancestry for all eukaryotes. This pinpoints the alpha-proteobacterial endosymbiosis to before the last common ancestor of all eukaryotes without ambiguity.
Keywords:mitochondria  mitosome  hydrogenosome  iron–  sulfur cluster  origin of the eukaryotic cell
本文献已被 PubMed Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号