首页 | 本学科首页   官方微博 | 高级检索  
     


Autophagy is disrupted in a knock-in mouse model of juvenile neuronal ceroid lipofuscinosis
Authors:Cao Yi  Espinola Janice A  Fossale Elisa  Massey Ashish C  Cuervo Ana Maria  MacDonald Marcy E  Cotman Susan L
Affiliation:Molecular Neurogenetics Unit and Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
Abstract:Juvenile neuronal ceroid lipofuscinosis is caused by mutation of a novel, endosomal/lysosomal membrane protein encoded by CLN3. The observation that the mitochondrial ATPase subunit c protein accumulates in this disease suggests that autophagy, a pathway that regulates mitochondrial turnover, may be disrupted. To test this hypothesis, we examined the autophagic pathway in Cln3(Deltaex7/8) knock-in mice and CbCln3(Deltaex7/8) cerebellar cells, accurate genetic models of juvenile neuronal ceroid lipofuscinosis. In homozygous knock-in mice, we found that the autophagy marker LC3-II was increased, and mammalian target of rapamycin was down-regulated. Moreover, isolated autophagic vacuoles and lysosomes from homozygous knock-in mice were less mature in their ultrastructural morphology than the wild-type organelles, and subunit c accumulated in autophagic vacuoles. Intriguingly, we also observed subunit c accumulation in autophagic vacuoles in normal aging mice. Upon further investigation of the autophagic pathway in homozygous knock-in cerebellar cells, we found that LC3-positive vesicles were altered and overlap of endocytic and lysosomal dyes was reduced when autophagy was stimulated, compared with wildtype cells. Surprisingly, however, stimulation of autophagy did not significantly impact cell survival, but inhibition of autophagy led to cell death. Together these observations suggest that autophagy is disrupted in juvenile neuronal ceroid lipofuscinosis, likely at the level of autophagic vacuolar maturation, and that activation of autophagy may be a prosurvival feedback response in the disease process.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号