首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of albumin, dextran, and hyaluronidase on pulmonary interstitial conductivity
Authors:Lai-Fook, S. J.   Rochester, N. L.   Brown, L. V.
Affiliation:Biomedical Engineering Center, University of Kentucky, Lexington 40506.
Abstract:The fluid conductivity of albumin solutions of various concentrations relative to that of saline was measured in the interstitium surrounding a short segment of a large (1.5- to 3-mm-diam) blood vessel of an isolated rabbit lung of which air spaces and vasculature were filled with silicon rubber. At a constant driving pressure, the flow of the following solutions was measured sequentially: normal saline and albumin solution (3, 5.5, 8, or 15 g/100 ml saline), hyaluronidase solution (0.02 g/100 ml), and albumin solution (same concentration used before hyaluronidase solution). The albumin-to-saline flow ratios averaged 1.00 +/- 0.23 (SD), 1.01 +/- 0.21, 1.32 +/- 0.63, and 1.54 +/- 0.36 for albumin concentrations of 3, 5.5, 8, and 15 g/100 ml, respectively. These ratios were higher than the corresponding values of 0.88, 0.78, 0.72, and 0.5 expected if the flow of albumin solution were to depend only on fluid viscosity. The flow of dextran and hyaluronan solutions was more viscosity dependent than the flow of albumin solutions. The increased flow of albumin solution could be the result of a reduced excluded volume of albumin caused by collagen and glycosaminoglycans with an increased albumin concentration. The flow of hyaluronidase solution was 24 +/- 22 (SD)-fold (n = 36) larger than the flow of albumin solution. Thus hyaluronan was responsible for most of the hydraulic resistance of the interstitium to bulk flow. After its degradation, the flow of albumin solution became more viscosity dependent. The interaction between plasma proteins and glycosaminoglycans in the pulmonary interstitium could serve to enhance clearance of microvascular filtrate, particularly under conditions of large protein leaks.
Keywords:
点击此处可从《Journal of applied physiology》浏览原始摘要信息
点击此处可从《Journal of applied physiology》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号