Interference of plasmid pCM194 with lysogeny of bacteriophage SP02 in Bacillus subtilis. |
| |
Authors: | R Marrero and P S Lovett |
| |
Abstract: | Three observations indicated that the 2-megadalton chloramphenicol resistance plasmid pCM194 interferes with SP02 lysogeny of Bacillus subtilis. SP02 plaques formed on B. subtilis(pCM194) appeared almost clear, whereas plaques produced on plasmid-free or pUB110-containing cells contained large turbid centers. The number of phages spontaneously liberated by B. subtilis(SP02) was increased 10-fold or more when pCM194 was also present in the lysogens. Lastly, growth of B. subtilis(SP02, pCM194) for approximately 20 to 25 generations resulted in essentially complete loss of the prophage. This interference was not observed with pUB110 or pE194, and the pCM194 interference was not directed against B. subtilis temperate phage phi 105, which is unrelated to SP02. Lytic replication of SP02 appeared to be unaffected by pCM194. pCM194 interference with SP02 lysogeny was demonstrable in recombination-proficient strains and a recE mutant of B. subtilis. SP02 prophage which were noninducible due to the phage ind mutation were resistant to pCM194 interference. pCM194 interference was lost when the entire pCM194 molecule was joined at its unique HpaII site or at one of the two MboI sites to pUB110 or pUB110 derivatives. pBR322 joined to pCM194 at the same MboI site or at the HindIII site produced chimeras that retained the ability to interfere with SP02 lysogeny. A three-part plasmid constructed by joining pBR322 to pCM194 (at HindIII sites) and to pE194 (at PstI sites) was compatible with the SP02 prophage and showed a temperature-sensitive replication phenotype characteristic of the pE194 replicon. One explanation for the interference involves competition for a host component between an SP02 genome attempting to establish lysogeny and plasmids whose replication is directed by the pCM194 replicon. |
| |
Keywords: | |
|
|