首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The Kinetic Mechanism of 5-Enolpyruvylshikimate-3-Phosphate Synthase from a Gram-Positive Pathogen Streptococcus Pneumoniae
Abstract:Abstract

The Streptococcus pneumoniae 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase is a potential novel antibacterial target. The enzyme catalyzes a reversible transfer of an enolpqruvyl group from phospho(enol)pqruvate (PEP) to shikimate 3-phosphate (S3P) to give EPSP with the release of inorganic phosphate (Pi). Understanding the kinetic mechanism of this enzyme is crucial to the design of novel inhibitors of this enzyme that may hate potential as antibacterial agents. Steady-state kinetic studies of product inhibition and inhibition by glyphosate (GLP) have demonstrated diverse inhibition patterns of the enzyme. In the forward reaction. GLP is a competitive inhibitor with respect to PEP, but an uncompetitive inhibitor relative to S3P. Product inhibition shows that EPSP is a competitive inhibitor versus both PEP and S3P. suggesting that the forward reaction follows a random sequential mechanism. In the reverse reaction. GLP is an uncompetitive inhibitor versus EPSP, but a noncompetitive inhibitor versus Pi. This indicates that a non-productive quaternary complex might he formed between the enzyme. EPSP, GLP and Pi. Product inhibition in the reverse reaction has also been investigated. The inhibition patterns of the S. pneumoniae EPSP synthase are not entirely consistent with those of EPSP synthases from other species, indicating that EPSP synthases from different organisms may adopt unique mechanisms to catalyze the same reactions.
Keywords:Shikimate pathway  EPSP synthase  Glyphosate  Steady-state kinetics  Product inhibition
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号