首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Synthesis and biological evaluation of 2,5-disubstituted 1,3,4-oxadiazole derivatives with both COX and LOX inhibitory activity
Abstract:Dual cyclooxygenase/lipoxygenase (COX/LOX) inhibitors constitute a valuable alternative to classical nonsteroidal anti-inflammatory drugs (NSAIDs) and selective COX-2 inhibitors for the treatment of inflammatory diseases. A series of 3-(5-phenyl/phenylamino-1,3,4]oxadiazol-2-yl)-chromen-2-one and N-5-(2-oxo-2H-chromen-3-yl)-1,3,4]oxadiazol-2-yl]-benzamide derivatives were synthesized and screened for anti-inflammatory, analgesic activity. All the derivatives prepared are active in inhibiting oedema induced by carrageenan. Compound 4e was found more potent with 89% of inhibition followed by compound 4b (86%). Compounds with >70% of anti-inflammatory activity were tested for analgesic, ulcerogenic, and lipid peroxidation profile. Selected compounds were also evaluated for inhibition of COXs (COX-1 and COX-2) and LOXs (LOX-5, LOX-12, and LOX-15). Compound 4e was comparatively selective for COX-2, LOX-5, and LOX-15. Study revealed that these derivatives were more effective than ibuprofen with reduced side effects. It can be suggested that these derivatives could be used to develop more potent and safer NSAIDs.
Keywords:Cyclooxygenase  lipoxygenase  oxadiazole  anti-inflammatory agents
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号