首页 | 本学科首页   官方微博 | 高级检索  
     


Immunoglobulin g antibody-mediated enhancement of measles virus infection can bypass the protective antiviral immune response
Authors:Iankov Ianko D  Pandey Manoj  Harvey Mary  Griesmann Guy E  Federspiel Mark J  Russell Stephen J
Affiliation:Molecular Medicine Program, Mayo Clinic, Rochester, MN 55905, USA. Iankov.Ianko@mayo.edu
Abstract:Antibodies to viral surface glycoproteins play a crucial role in immunity to measles by blocking both virus attachment and subsequent fusion with the host cell membrane. Here, we demonstrate that certain immunoglobulin G (IgG) antibodies can also enhance the entry of measles virus (MV) into monocytes and macrophages. Antibody-dependent enhancement of infectivity was observed in mouse and human macrophages using virions opsonized by a murine monoclonal antibody against the MV hemagglutinin (H) glycoprotein, polyclonal mouse anti-MV IgG, or diluted measles-immune human sera. Neither H-specific Fab fragments nor H-specific IgM could enhance MV entry in monocytes or macrophages, indicating involvement of a Fc γ receptor (FcγR)-mediated mechanism. Preincubation with an anti-fusion protein (anti-F) monoclonal antibody or a fusion-inhibitory peptide blocked infection, indicating that a functional F protein was required for viral internalization. Classical complement pathway activation did not promote infection through complement receptors and inhibited anti-H IgG-mediated enhancement. In vivo, antibody-enhanced infection allowed MV to overcome a highly protective systemic immune response in preimmunized IfnarKo-Ge46 transgenic mice. These data demonstrate a previously unidentified mechanism that may contribute to morbillivirus pathogenesis where H-specific IgG antibodies promote the spread of MV infection among FcγR-expressing host cells. The findings point to a new model for the pathogenesis of atypical MV infection observed after immunization with formalin-inactivated MV vaccine and underscore the importance of the anti-F response after vaccination.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号