首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Oligomeric structure of a cathelicidin antimicrobial peptide in dodecylphosphocholine micelle determined by NMR spectroscopy
Authors:Saravanan Rathi  Bhattacharjya Surajit
Institution:School of Biological Sciences, Division of Structural and Computational Biology, Nanyang Technological University, Singapore 637551, Singapore.
Abstract:The broad spectrum of antibacterial activities of host defense cationic antimicrobial peptides (AMPs) arises from their ability to perturb membrane integrity of the microbes. The mechanisms are often thought to require assembly of AMPs on the membrane surface to form pores. However, three dimensional structures in the oligomeric form of AMPs in the context of lipid membranes are largely limited. Here, we demonstrate that a 22-residue antimicrobial peptide, termed VK22, derived from fowlicidin-1, a cathelicidin family of AMP from chicken oligomerizes into a predominantly tetrameric state in zwitterionic dodecylphosphocholine (DPC) micelles. An ensemble of NMR structures of VK22 determined in 200mM perdeuterated DPC, from 755 NOE constrains including 19 inter-helical NOEs, had revealed an assembly of four helices arranged in anti-parallel fashion. Hydrogen bonds, C(α)H-O=C types, and van der Waals interactions among the helical sub-units appear to be involved in the stabilization of the quaternary structures. The central region of the barrel shaped tetrameric bundle is non-polar with clusters of aromatic residues, whereas all the cationic residues are positioned at the termini. Paramagnetic spin labeled NMR experiments indicated that the tetrameric structure is embedded into micelles such that the non-polar region located inside the lipid acyl chains. Structure and micelle localization of a monomeric version, obtained from substitution of two Tyr residues with Ala, of the peptide is also compared. The mutated peptide VK22AA has been found be localized at the surface of the micelles. The tetrameric structure of VK22 delineates a small water pore that can be larger in the higher order oligomers. As these results provide structural insights, at atomic resolution, into the oligomeric states of a helical AMP in lipid environment, the structural details may be further utilized for the design of novel self-assembled membrane protein mimics.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号