首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Surface Plasmon Tunability and Emission Sensitivity of Ultrasmall Fluorescent Copper Nanoclusters
Authors:Sujit Kumar Ghosh  Dewan S Rahman  Abdul Latif Ali  Anamika Kalita
Institution:1. Department of Chemistry, Assam University, Silchar, 788011, India
Abstract:Ultrasmall copper nanoparticles have been synthesized using copper(II) salt as precursor by hydrazine reduction in the presence of citric acid and cetyltrimethylammonium bromide facilitating the growth of stable copper nanoparticles with an average diameter of <2 nm. The corresponding surface plasmon resonances were monitored under variable microenvironments, and it is seen that these tiny copper nanoparticles form aggregates under stipulated reaction conditions. It is noted that ultrasmall copper nanoparticles do not exhibit any characteristic surface plasmon band in the visible region; rather, a continuous absorption is seen over the entire UV–vis region. However, a well-defined plasmon absorption band makes its appearance while the particles are aggregated in close-packed assembly. These results demonstrate that the maximum of surface plasmon resonance is red-shifted from that of isolated particles because of electromagnetic interaction between the particles. The aggregation process is manifested upon changes of pH, anionic surfactant, etc. and is not reversible, i.e., the aggregates could not be re-dispersed into ultrasmall particles. The effect of addition of electrolyte has been monitored to study the surface plasmon damping of the copper nanoparticles. The plasmonic sensitivity of the copper nanoparticle aggregates has been elicited by the determination of amino acid chain length with exquisite sensitivity because of enormous electromagnetic field at the junction of the particles in the aggregates. Interestingly, the as-synthesized ultrasmall copper nanoclusters exhibit excellent fluorescence properties with a narrow emission profile. The emission properties of these copper nanoclusters have been utilized as an indicator for selective and ultrasensitive detection of highly toxic HgII ions in water in the nanomolar detection limit.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号